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Abstract: We discuss the sensitivity reach of a neutrino factory measurement to non-

standard neutrino interactions (NSI), which may exist as a low-energy manifestation of

physics beyond the Standard Model. We use the muon appearance modes νe → νµ/ν̄e → ν̄µ

and consider two detectors, one at L = 3000 km and the other at L = 7000 km; The

latter is nearly at the magic baseline which is known to have a great sensitivity to matter

density determination. Assuming the effects of NSI at the production and the detection

are negligible, we discuss the sensitivities to NSI and the simultaneous determination of θ13

and δ by examining the effects in the neutrino propagation of various systems in which two

NSI parameters εαβ are switched on. The sensitivities to off-diagonal ε’s are found to be

excellent up to small values of θ13. At sin2 2θ13 = 10−4, for example, |εeτ | ≃ a few×10−3 at

3σ CL for 2 degrees of freedom, whereas the ones for the diagonal ε’s are also acceptable,

|εee|(|εττ |) ≃ 0.1(0.2) at the same CL. We demonstrate that the two-detector setting is

powerful enough to resolve the θ13-NSI confusion problem, a notorious one which is thought

to be an obstacle in determining θ13 and δ. We believe that the results obtained in this

paper open the door to the possibility of using neutrino factory as a discovery machine for

NSI while keeping its primary function of performing precision measurements of the lepton

mixing parameters.
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1. Introduction

In the last 10 years various neutrino experiments made it clear that neutrinos have masses

and lepton flavors mix [1, 2]. Though the measurement of the values of θ13 and the CP

phase δ as well as determining the neutrino mass hierarchy still elude us, there exist an

array of experimental plans and ideas to make the goal. If successful they will bring

us a more or less complete picture of how neutrinos organize their mass spectrum and

how lepton flavors mix. When it happens, then, we will really be entering into the era of

precision measurement of lepton mixing parameters. An intriguing question is whether this

will serve just for precision measurements of more or less known quantities, or could help

us to discover new physics beyond the Standard Model which is amended to incorporate

neutrino masses and mixing.

It has been suggested since long time ago that neutrinos may have non-standard in-

teractions (NSI) in addition to those dictated by the Standard Model of electroweak in-

teractions [3 – 6]. If there exists an energy scale for new physics at the TeV range, it is

conceivable that it produces higher dimension operators which affect the way how neutri-

nos interact with matter, the point raised in [7]. It was argued that such NSI possessed by

neutrinos need not be subject to the stringent constraints that the charged leptons have

to obey [8]. The existing constraints on NSI for neutrinos are worked out in [9, 10]. If

we follow naive dimensional counting with four Fermi operators the order of magnitude of

NSI is expected to be (mZ/MNSI)
2 ∼ 10−2 (∼ 10−4) for the energy scale of new physics

MNSI of ∼ 1 (10) TeV [11]. If we want to probe into such a tiny effect of NSI in the neu-

trino sector, extremely high sensitivities are required for experiments to detect deviations

from the standard three flavor oscillations. A large number of papers in the literature is

devoted to discuss NSI in various context including long-baseline accelerator experiments,

the atmospheric and the solar neutrino observations, and supernova neutrinos [11 – 26].

It is the purpose of this paper to discuss the discovery potential of NSI in a neutrino

factory. As is well known, a neutrino factory [27] is an ultimate apparatus for precision

measurements of the lepton mixing parameters. Because of the capability of clean detection

of muons including the charge identification, its sensitivity to θ13 is expected to go down to

an extremely small value, somewhere in the range sin2 2θ13 = 10−5 − 10−4 [28 – 30]. Then,

it is natural to think about neutrino factory as a discovery machine for NSI.

One of the key issues in the discussion of the discovery reach of NSI is that we have

to guarantee, at the same time, the ability of accurately measure the lepton mixing pa-

rameters, especially θ13 and δ, is left intact. However, it is a difficult goal to achieve in

particular when we go down to very small values of θ13 and NSI contributions. In fact,

it is known that the presence of NSI can confuse the measurement of θ13 by mimicking

its effect [13, 14]. Unless this problem is somehow solved, it is difficult to think about

a neutrino factory as a sensitive hunting tool for NSI and at the same time as a viable

apparatus for precision measurements of the lepton mixing parameters.

We do overcome the confusion problem by our set-up. We consider a two detector

setting with baselines at L = 3000 km and at L = 7000 km [13], which will sometimes

be referred as the intermediate and the far detectors, respectively. Comparing the yields
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taken by the two detectors is the key to resolve the confusion. These features will be

demonstrated in sections 5 and 6. We must note, however, that it is only by keeping the

solar ∆m2 terms that one can gain access to the CP phase δ which is crucial to resolve

the muddle between θ13 and NSI. Therefore, we keep the solar ∆m2 terms throughout our

analytical and numerical treatment.

If the two detector setting is a special requirement for hunting NSI it would not be easy

to implement it into the project. Fortunately, it is not the case. It has been suggested [31,

32] that combining measurements by detectors at two baselines, one at 3000-4000 km and

the other at ∼7000 km, is powerful enough to resolve the parameter degeneracy [31, 33, 34]

associated with the measurement of the lepton mixing parameters, a notorious obstacle to

its precision determination. The power of the two detector setting has been confirmed also

by more recent analysis [35].

In section 2, we present the general framework for probing NSI through neutrino prop-

agation in matter by switching on two NSI contributions simultaneously and discuss some

important points about NSI effects in the P (νe → νµ)/P (ν̄e → ν̄µ) oscillation probabili-

ties, the channels explored in this paper. In section 3, we elucidate the powerfulness of the

strategy to look for NSI in a neutrino factory by combining the measurements of two iden-

tical detectors at different baselines. The assumptions we make about the neutrino factory

parameters and the two detector setup as well as the analysis we perform are described

in section 4. In section 5, we discuss the maximal sensitivity to the various combinations

of NSI parameters and their effects on the precision measurements of the oscillation pa-

rameters δ and θ13. In section 6 we discuss the accuracy of the determination of the NSI

parameters as well as their impact on the measurement of δ and θ13 in the case they are

sufficiently large to be measured by the neutrino factory experiment. The discovery reach

to NSI, δ and θ13 is presented in section 7. Section 8 is devoted to our final concluding

remarks. In appendix A, we give details on the derivation of the appearance probability

P (νe → νµ) in the presence of two NSI parameters.

2. Non-standard interactions of neutrinos

2.1 General features

We consider NSI involving neutrinos of the type

LNSI
eff = −2

√
2 εfP

αβGF (ναγµPLνβ) (fγµPf), (2.1)

where GF is the Fermi constant, and f stands for the index running over fermion species

in the earth, f = e, u, d, in which we follow [9] for notation. P stands for a projection

operator and is either PL ≡ 1
2(1 − γ5) or PR ≡ 1

2(1 + γ5). We summarize here the bounds

on εfP
αβ which are obtained in [9, 10] for the readers convenience:







−0.9 < εee < 0.75 |εeµ| <∼ 3.8 × 10−4 |εeτ | <∼ 0.25

−0.05 < εµµ < 0.08 |εµτ | <∼ 0.25

|εττ | <∼ 0.4






, (2.2)
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bounds from Davidson et al. (LEP) are at 90% (95%) CL.

In this paper, we consider the effect of NSI in neutrino propagation in matter. It

is known that NSI can affect production and detection processes of neutrinos so that a

complete treatment must involve also the latter two effects. However, we should note that

the muon storage ring which we assume as a source of neutrinos is special as it is one of the

cleanest. Muon decay has been studied with great precision and room for NSI is smallest

among the sources [36]. Because construction of the muon storage ring will require an

intense muon source, we assume that the already tight constraints on NSI by muon decay

would become much more stringent at that time. Therefore, we believe that to neglect

NSI in the production of neutrinos in fact gives a fair approximation, unless we go down

to extremely small values of εαβ .

With regard to NSI at the detection this may be more debatable. However, we call

the readers’ attention to the fact that upon construction of the neutrino factory the near

detector sitting in front of the storage ring will give a severe bound on NSI [9]. We also

remark that even before that era several low energy neutrino experiments may be able

to place equally severe constraints on NSI [37 – 39]. The bounds from them are placed

on the product of NSI at the source and the detection. But if the constraint on NSI by

muon decays is strongly constrained, this will translate into a stringent bound on NSI at

the detection. Furthermore, since we compare two identical detectors, at the intermediate

(L = 3000 km) and the far (L = 7000 km) location, the NSI effect at detectors tend to

cancel. Therefore, our approximation of ignoring NSI at the detection points may give a

reasonable first approximation.

To discuss the effects of NSI during neutrino propagation in matter we will use the

effective coefficients εαβ as it is traditional in this field. They are defined as εαβ ≡
∑

f,P
nf

ne
εfP
αβ . where nf is the number density of the fermion species f in matter. Nor-

malizing by the electron number density ne leads to a simple structure of the effective

Hamiltonian which governs the neutrino propagation in matter. Approximately, the rela-

tion εαβ ≃ ∑

P

(

εeP
αβ + 3 εuP

αβ + 3 εdP
αβ

)

holds because of a factor of ≃3 larger number of u

and d quarks than electrons in iso-singlet matter.

The time evolution of neutrinos in flavor basis with non-standard neutrino matter

interactions can be generically written as

i
d

dt







νe

νµ

ντ






=

1

2E






U







0 0 0

0 ∆m2
21 0

0 0 ∆m2
31






U † + a







1 + εee εeµ εeτ

ε∗eµ εµµ εµτ

ε∗eτ ε∗µτ εττ



















νe

νµ

ντ






(2.3)

where U is the Maki-Nakagawa-Sakata (MNS) [1] matrix, and a ≡ 2
√

2GF neE [3] where

E is the neutrino energy and ne denotes the electron number density along the neutrino

trajectory in the earth. ∆m2
ij ≡ m2

i − m2
j with neutrino mass mi (i = 1 − 3). Eq. (2.3)

defines the framework for discussing neutrino propagation in matter with NSI.

2.2 Physics of neutrino propagation in matter with NSI; two ε system

In this paper, we will be dealing with the cases where the following pairs of ε parameters

are present at the same time: εeτ − εee, εeτ − εττ , εττ − εee, εeµ − εee, εeµ − εττ , and
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εeτ − εeµ. The systems with many ε’s are complicated enough and a step by step approach

is needed to grasp the whole picture. In appendix A, we will derive the exact expressions

and the approximate formulas for the appearance oscillation probabilities P (νe → νµ) in

the two systems εeτ − εee and εeµ − εee. To obtain tractable formulas we use perturbation

expansion in terms of small parameters, s13 ≃ δ21 ≃ εeτ (or εeµ) which we assume to have

comparable sizes ∼ 10−2, where δ21 is defined in appendix A. For simplicity, we collectively

denote their order of magnitude as ǫ under the hope that no confusion arises with the NSI

elements εαβ . See [11, 14, 15, 26, 40] for different treatment of the perturbation series. We

will observe that in leading order the appearance oscillation probabilities P (νe → νµ) are

of order ǫ2. Of course, it reduces to the Cervera et al. formula [28] if εαβ are switched off.

We mention some notable features of the leading order formulas of P (νe → νµ) in (A.25)

and (A.27), and make comments for better understanding of our results. To discuss simul-

taneously the εeτ − εee and εeµ − εee systems, we use the notation εαβ for (α, β) is either

(eµ) or (eτ). Since an off-diagonal element of ε can have CP violating phase we have a

new source for CP violation in addition to δ in the MNS matrix, as emphasized in [11]

in a somewhat different framework. In this context we notice that εαβ comes in via three

different ways:

(a) εαβ comes into the formula with its phase, φαβ, in the form δ + φαβ together with the

leptonic Kobayashi-Maskawa (KM) phase δ in the MNS matrix. [15, 25].

(b) εαβ comes in by itself, i.e., in the form of Re(εαβ) or Im(εαβ).

(c) εαβ comes in by the absolute magnitude squared, |εαβ |2 without phase.

Terms of the type (a) and (c) survive even when the solar ∆m2
21 is turned off, whereas

terms of the type (b) arise only when they are accompanied by the solar ∆m2
21.

We suggest an intuitive understanding of the fact that two phases come together when

∆m2
21 is switched off. The system without ∆m2

21 contains effectively only two generations

of neutrinos and on physics ground the CP violating phase should be unique. Therefore,

the phase of εαβ and the KM phase δ must come together. From this reasoning, we suspect

that this feature holds even in the exact formula. Of course, the two phases start to play

their individual roles when the solar ∆m2
21 is turned on, as in the form of (b) above and

the second line of the Cervera et al. formula (A.26), as seen in (A.25) and (A.27).

Due to the special way through which the phase of εαβ enters into the oscillation

probability in the absence of the solar ∆m2
21, we expect that confusions occur in the

experimental settings for which ignoring the solar ∆m2
21 gives a fair approximation. We

expect two types of confusion to occur:

• Two phase confusion: Since they appear in the special combination φαβ + δ, it is

obvious that two phase confusion occurs; the data allows determination of only the

sum. The confusion cannot be resolved even if the anti-neutrino channel is combined.

It can be resolved for relatively large |εαβ | because the terms with ∆m2
21 start to play

more important role. These features are in fact observed for εeµ in [25]. We note that

the symmetry under simultaneous shift of φαβ and δ by the same amount but with
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opposite signs is a symmetry of the whole system at the magic baseline. We will see

that this confusion shows up in our analysis. (See sections 5 and 6.)

• Phase-magnitude confusion: We expect that another type of confusion exists. The

term which contains the phases in (A.25) and (A.27) take the form

A|εαβ | cos(φαβ + δ) + B|εαβ | sin(φαβ + δ) = |εαβ |
√

A2 + B2 cos(φαβ + δ − ξ) ,(2.4)

where tan ξ = B/A. Therefore, varying the magnitude of the NSI element can be

compensated by adjusting the phase of εαβ . Unlike the two phase confusion, this

confusion can in principle be resolved if (1) |εαβ |2 terms are important enough to

resolve the confusion, and/or (2) the anti-neutrino channel is combined, because

the coefficients A and B are different between neutrino and anti-neutrino oscillation

probabilities.

3. Probing NSI by detectors at two baselines; their characteristics and

synergy

In this section, we indicate by qualitative level arguments that the νµ/ν̄µ appearance mea-

surement in neutrino factory at the magic baseline,

L =

√
2π

GF ne
= 7200

(

ρ

4.5 g/cm3

)−1

km , (3.1)

and the synergy obtained when combined with measurement at L ≃ 3000 km provide

a powerful method for probing non-standard neutrino-matter interactions. Powerfulness

of the measurement at the magic baseline may be natural to expect for εee because it is

effectively equivalent to measuring the electron number density in earth matter for which

the accuracy of determination is known to be excellent [41, 42]. We show in this paper that

this statement is even more true for flavor off-diagonal NSI. We rely on νe → νµ/ν̄e → ν̄µ

appearance channels, the so called golden channels [28], because of the matured muon

detection technology.

3.1 Detector at the magic baseline as a sensitive probe to NSI

To illuminate that measurement at the magic baseline is a powerful indicator for NSI, in

particular for off-diagonal εαβ , we present in figure 1 the ellipses formed when δ is varied in

the bi-probability space spanned by P (νe → νµ) and P (ν̄e → ν̄µ) [33] for various non-zero

NSI parameters. The calculation was performed numerically assuming the constant matter

density ρ = 4.5 g/cm3. In each panel only the indicated particular εαβ is turned on. Also

shown in figure 1 as an orange strip is the region covered by the ellipses when θ13 is varied

for the cases without NSI. It approximately forms a narrow straight strip (or “pencil”)

because of vanishingly small effect of δ at the magic baseline [43]. The remarkable feature

of figure 1 is that the effect of NSI in the neutrino and the anti-neutrino probabilities is

large for electron-type off-diagonal terms, εeτ and εeµ, even though their size is extremely

small, εeµ = εeτ = 10−3. Notice that the sizes of the other ε’s which give rise to effect of
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Bi-Probability plot for the Magic Baseline L=7200km, E=30 GeV for sin
2
2θ13 = 0.0005, 0.001 and 0.0015

0 0.1 0.2 0.3 0.4 0.5
0.00

0.05

0.10

0.15

0 0.1 0.2 0.3 0.4 0.5

P(ν
e 

νµ) [x10
-4

] 

δ = 0
δ = π/2
δ = π
δ = 3π/2

0 0.1 0.2 0.3 0.4 0.5 0.6

P(
ν e

ν µ) [
x1

0-4
]

|ε
ee

| = 0.02 |ε
eµ|=0.001

|εµτ|=0.02

|ε
eτ| = 0.001

|εµµ|=0.02 |εττ|=0.05

No NSI

Figure 1: Bi-probability plots in P (νe → νµ)−P (ν̄e → ν̄µ) space at the magic baseline, L = 7200

km, for E = 30GeV, computed numerically using the constant matter density ρ = 4.5 g/cm3 with

the electron number density per nucleon equals to 0.5. The both axes is labeled in units of 10−4.

In each panel only the indicated particular εαβ is turned on. The upper (lower) panels, from left to

right, correspond to the case of non-vanishing εee, εeµ, and εeτ (εµτ , εµµ, εττ ), respectively. The red

and the blue ellipses are for positive and negative signs of ε, respectively, for the cases with (from

left to right) sin2 2θ13 = 0.0005, 0.001, and 0.0015, as indicated in the heading. The values of the

non-vanishing ε are written in each panel. The orange colored region indicates the region spanned

by ellipses without NSI when θ13 is varied. The green dots are unresolved ellipses corresponding to

the same values of sin2 2θ13 but without NSI. The values of the standard lepton mixing parameters

are given in the caption of figure 3. Only for the case of ε > 0 and sin2 2θ13 = 0.001 we show the

position corresponding to the four different values of δ = 0, π/2, π and 3π/2 by the open circle,

square, diamond and asterisk, respectively.

similar magnitude as those of εeµ and εeτ are larger by a factor of 20 (εµτ and εµµ) and of

> 50 (εττ ). This is the key point of our setting which allows the extremely high sensitivity

to εeτ and εeµ.

There are some curious features in figure 1; The behavior of the ellipses with εeτ and

εeµ are distinct from the other cases having ellipses shrunk forming almost lines. At the

same time it is also notable that they look almost identical to each other. Let us understand

these characteristic features of figure 1.

In appendix A we derive the leading order formula for P (νe → νµ) with εeτ or εeµ as

– 7 –
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2
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] 
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| = 0.02 |ε
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eτ| = 0.001
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Figure 2: The same as in figure 1 but for the baseline L = 3000 km with the matter density

ρ = 3.6 g/cm3. The same values of ε are used in each panel. In the left and right lower panels the

ellipses with positive and negative sign of ε overlap almost completely and each individual curve is

not visible. The green ellipses which correspond to the same three values of sin2 2θ13 but without

NSI are clearly visible.

well as εee corresponding to the ones derived by Cervera et al. [28] for the standard case

without ε. At the magic baseline, aL
4E

= π, the formulas for the νµ appearance oscillation

probability greatly simplifies. With NSI represented by εeτ it is given by

P (νe → νµ; εeτ ) = 4
(∆m2

31)
2

(a−∆m2
31)

2
s2
23s

2
13 sin2

(

∆m2
31L

4E

)

(3.2)

+
4ac23s

2
23

(a−∆m2
31)

2

[

2∆m2
31s13|εeτ | cos(δ+φeτ )+c23a|εeτ |2

]

sin2

(

∆m2
31L

4E

)

.

The corresponding formula for anti-neutrinos can be obtained by making the replacement

a → −a, δ → −δ, and φeτ → −φeτ . The formula with εeµ is very similar to (3.2). It is

obtained by replacing c23εeτ by s23εeµ in the second line of eq. (3.2). Then, the value of

P (νe → νµ) with εeτ and εeµ are numerically equal with the values of the parameters used

in figure 1, the maximal value of θ23 and |εeτ | = |εeµ|. It explains the identical behavior of

the probabilities with εeµ and εeτ seen in the second and the third upper panels in figure 1.

The ellipse in these panels shrink approximately to a line because there is only cos(δ +φeτ )
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dependence in the probability where φeτ denotes the phase of εeτ . The form cos(δ + φeτ )

means that the shape and the location of shrunk ellipses in figure 1 are unchanged even

when φeτ is varied. The label of δ on the ellipse (if it is placed), of course, changes.

The length of the shrunk ellipse is equal to twice the coefficient of cos(δ + φeτ ) of the

last term in eq. (3.2). With the values of the parameters used (E=30 GeV, L = 7200 km,

ρ = 4.5 g/cm3, εeτ = 0.001, sin2 2θ13 = 0.001) it can be estimated as 1.8×10−5, which is in

perfect agreement with the length of the shrunk middle ellipse projected onto P (νe → νµ)

axis in figure 1. Therefore, we have understood the qualitative features of the flat ellipse

at the magic baseline as well as its size.

We can also understand the reason why the effect of εττ and εµτ are suppressed by

deriving a similar formula which contains one of them in an analogous way as in appendix A.

The leading order terms which involve one of these ε’s are of order ǫ3 and hence smaller.

3.2 Detector at L = 3000 km and the synergy expected when combined with

the one at L ≃ 7000 km

It is instructive to compare the similar plot for the intermediate detector at L = 3000 km

which is shown in figure 2 to figure 1 at L = 7200 km. The same values of ε’s as in each

corresponding panel in figure 1 are used. The three representative values of sin2 2θ13 used

are also the same as in figure 1. We immediately notice several clear differences. First

of all, the effect of δ is large at L = 3000 km for both cases with and without NSI, as

indicated by the blue and the red lines (with NSI) and by the green ellipses as well as by

wide span of the ellipses indicated by the orange region (without NSI). The ellipses with

NSI, except for the case with εeµ, are buried into this region. This is clearly the cause of

the problem of confusion between θ13 and ε’s one encounters when one tries to measure

θ13 and δ allowing for NSI; The system with ε’s can mimic the one with different values of

θ13 but without NSI. In figure 2 the difference between the confused parameters and the

genuine ones are small, apart from the εeµ case, because we take small values of ε’s. It is

also notable that the effect of the sign of the ε’s is not quite visible, which is nothing but

a consequence of the two-phase degeneracy as explained in section 2.2. (See section 6.2 for

more about the degeneracy.)

When we try to determine the values of ε’s it is also a bad news because there can be

a severe confusion between NSI and the standard oscillation effect with θ13 and δ. We will

see in sections 5 and 6 that this confusion for ε determination is much severer than that in

θ13 − δ determination at L = 3000 km, which will be manifested as a complicated island

structure in the allowed region. On the other hand, when we try to measure θ13 and δ at

L = 3000 km confusion due to the presence of ε’s is not so significant provided that the ε

is small as we see in figure 2. In particular, as we will see, the sensitivity to δ is good even

after marginalization of ε’s. (See figure 7–10 in section 5.)

On the other hand, at L ≃ 7000 km the sensitivity to ε’s is great though essentially

there is no sensitivity to δ. These consideration naturally suggest the possibility of com-

bining the intermediate and the far detectors to determine simultaneously NSI parameters

at the same time measuring θ13 and δ.
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The markedly different behavior of the bi-probability plots between the εeµ and εeτ

systems at L ≃ 3000 km can be traced back to the difference between the third terms in the

analytic formulas (A.25) and (A.27). We should note that the almost identical behavior

between the systems with εeµ and εeτ at L = 7000 km, and the marked difference between

them at L ≃ 3000 km makes it interesting by itself to compare their sensitivities at these

two baselines and when they are combined. We will see later that sensitivity to εeµ is

essentially determined by the effect at L = 3000 km whereas that to εeµ is determined by

the combination of L = 3000 km and 7000 km.

4. Analysis method

4.1 Assumptions

In our analysis in this paper, we make the following assumptions for the parameters of

neutrino factory. We assume an intense muon storage ring which can deliver 1021 useful

decaying muons per year. The muon energy is taken to be 50 GeV. We assume 4 years

running in neutrino and 4 years running in anti-neutrino modes, respectively. We assume

the two magnetized iron detectors, one at baseline L = 3000 km and the other at L = 7000

km which is close to but not exactly the magic baseline Lmagic.
1 Each detector is assumed to

have fiducial mass of 50 kton. We consider the golden channels, νe → νµ and ν̄e → ν̄µ in this

paper. For simplicity, we use the constant matter density approximation throughout this

work, and take the Earth matter density along the neutrino trajectory as ρ = 3.6 g/cm3

and ρ = 4.5 g/cm3 for baselines L = 3000 km and at L = 7000 km, respectively. The

electron fraction Ye is assumed to be 0.5. We believe that using more realistic Earth

matter density profile will not change much our results.

In most part of our analysis we make the following simplifications: (1) We ignore all the

background due to the misidentification of muon charges and other causes. (2) We neglect

the systematic uncertainties. Since the muon detection at high energies is supposed to

be extremely clean in magnetized iron detectors the simplification (1) may not affect the

results in a significant way apart from the case of extremely small θ13. With regard to

the systematic errors we feel that no solid numbers are known yet in spite of the fact that

great amount of efforts are made toward reliable estimation of them [44]. Nevertheless, we

will try to estimate to what extent the sensitivities we obtain in our analysis are affected

by introduction of background and the systematic errors. See section 5.5.

We always take the normal mass hierarchy as an input. We will consider in this paper

various cases in which only two different flavor elements of NSI (εαβ) are turned on at the

1By assuming the far detector at baseline somewhat off Lmagic, we want to demonstrate that it is not

quite necessary to place it exactly at Lmagic. First of all, we feel it unrealistic that one can place the far

detector at Lmagic with a mathematical precision. Apart from the problem of site availability, the exact

magic baseline cannot be determined prior measurement unless the values of the relevant mixing parameters,

the earth matter density along the neutrino trajectory and its relationship with the effective density for

neutrino oscillation [42] are precisely known. Only a posteriori the matter density can be measured in situ

in the experiment [41].
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same time. We also assume that εαβ is real, leaving the interesting topics of complex phase

effects to elsewhere.

4.2 Analysis procedure

We define the χ2 function as follows,

χ2 ≡ min
θ13,δ,ε

3
∑

i=1

2
∑

j=1

2
∑

k=1

[

Nobs
i,j,k − N theo

i,j,k (θ13, δ, ε)
]2

N theo
i,j,k (θ13, δ, ε)

, (4.1)

where Nobs
i,j,k is the number of observed (simulated) events computed by using the given

input parameters and N theo
i,j,k is the theoretically expected number of events to be varied in

the fit by freely varying the mixing and NSI parameters. Since we ignore the systematic

uncertainties, the denominator in (4.1) represent the statistical uncertainties. The sum-

mation with respect to indices i, j and k imply energy (3 bins), baseline (3000 km or 7000

km), and the type of neutrinos (neutrino or anti-neutrino), respectively. The intervals of 3

energy bins we consider are 4-8 GeV, 8-20 GeV and 20-50 GeV for neutrinos and 4-15 GeV,

15-25 GeV and 25-50 GeV for anti-neutrinos.

The theoretically expected number of events are computed as

N theo(θ13, δ, ε) = nµTM
109NA

m2
µπ

E2
µ

L2

∫ Emax

Emin

g(E)σνµ(ν̄µ)(E)Pνe→νµ(ν̄e→ν̄µ)(E; θ13, δ, ε)dE,

(4.2)

where nµ is the number of useful muon decays per year, T is the exposure period (in years),

M is the detector mass (in ktons), NA is the Avogadro’s number, mµ is the muon mass,

Eµ is the energy of the stored muons, L is the baseline, σνµ(ν̄µ)(E) is the charged current

interaction cross section for νµ and ν̄µ, and Pνe→νµ(ν̄e→ν̄µ)(E; θ13, δ, ε) is the oscillation

probability. In this work, we considered the case where Eµ = 50 GeV, M = 50 kton, T

= 4 yr for both neutrinos and anti-neutrinos, and nµ = 1021 per year. The function g(E)

which is given as

g(E) ≡ 12
E2

E3
µ

(

1 − E

Eµ

)

(4.3)

is the unoscillated νe or ν̄e energy spectrum normalized to 1.

We assume, for simplicity, the detection efficiency is 100%.2 We neglect the finite

energy resolution in the detectors. Since the number of energy bins are small (=3) inclusion

of the energy resolution will not alter the results in a significant way.

The observed number of events are computed exactly in the same way but using the

given input parameters of θ13, δ and NSI parameters (ε), so that χ2
min = 0 at the best fit

point by construction.

Using the χ2 function defined in eq. (4.1), we define the allowed (sensitivity) regions

by the commonly used condition, ∆χ2 ≡ χ2 − χ2
min = 2.3, 6.18 and 11.83 for 1, 2 and 3 σ

confidence level (CL) for 2 degrees of freedom (DOF), unless otherwise stated.

2If the efficiency is f×100% we are effectively assuming the fiducial mass of the detector of 50/f kton. In

the current estimate f is expected to be about 0.8 apart from an extremely low energy region ∼ 5GeV [44].
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5. Sensitivity to non-standard interactions and measurement of θ13 and δ

with NSI

In this section, we discuss the sensitivity to NSI by the two detector setting. We also discuss

the accuracy of the determination of the mixing parameters θ13 and δ in the presence of

NSI. For these purposes we take the input values of two ε’s to be zero (or equivalently

vanishingly small) but freely vary them in fitting the data. The case with non-zero input

values of ε’s will be dealt with in section 6. To demonstrate the synergy between the

intermediate and the far detectors we present the sensitivity to NSI for each detector as

well as the combined one throughout this and the next sections. As a typical value of θ13 we

consider the case of sin2 2θ13 = 10−3, though we also discuss the case with sin2 2θ13 = 10−4

to show how the sensitivities depend on θ13. We have examined the four values of δ, π/4,

π/2, π, and 3π/2 as representative cases. However, we present only part of the figures we

have drawn not to make this paper too long.

5.1 Constraining NSI; case of zero input

In figures 3–6, we present the constraint on NSI that can be imposed by the neutrino factory

measurement defined in section 4.1 with various selected combination of two ε parameters.3

Figure 3 and 4 are for δ = π/4 whereas figure 5 and 6 are for δ = 3π/2. The left, the

middle, and the right panels of figures 3 and 5 (figures 4 and 6) are for the combination,

showing horizontal - vertical axes, εee−εeτ , εττ −εeτ , εee−εττ (εee−εeµ, εττ−εeµ, εeτ −εeµ),

respectively. The top, the middle, and the bottom panels are, respectively, for the baselines

L = 3000 km, L = 7000 km, and the two baselines combined. The blue, the red, and the

green curves are the allowed contours at 1σ, 2σ and 3σ CL for 2 DOF, respectively.

We observe that from the results presented in figure 3 through figure 6, the detector

at L = 3000 km alone does not have good resolution power for the possible existence of ε’s,

except for εeµ. The parameter εeµ is special since its impact on the oscillation probability is

so large (as seen in figure 2) that the measurement at L = 3000 km alone can give a strong

constraint on εeµ which seems consistent with the result obtained in ref. [25]. Apart from

the cases which involve εeµ, the effect of the simultaneous presence of two ε’s is manifest in

the appearance of many correlated regions/islands, though the precise shapes of the regions

depend on which combination of ε’s is turned on and on which input value of δ is used.

A similar statement applies to the case of the detector at L=7000 km. But, the

correlation between ε’s is quasi one-dimensional for most of the combinations though we

see branch structure in εee − εeτ case and sizable width in the εττ − εeτ case. Overall, the

constraints on the diagonal elements, εee and εττ , are much looser compared to those on εeτ

and εeµ. The latter feature comes from high sensitivities to the off-diagonal ε’s expected

at the magic baseline as discussed in section 3.1, while less sensitivity to the former is

expected by figures 1 and 2. The feature of correlation is least obvious in the combination

εee−εττ though indicating a weak oblique linear dependence. For the branch-like structure

3It appears to us that ragged behavior of the contours seen in some of the plots is of physical origin due

to the complicated structure of four-dimensional χ2 function. Some of the structures, however, could be

smoothen to a certain extent by introducing a finer grid and the finite energy resolution.
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Figure 3: Allowed regions projected into the plane of 2 NSI parameters, εee-εeτ (left panels), εττ -

εeτ (middle panels) and εee-εττ (right panels) corresponding to the case where the input parameters

are sin2 2θ13 = 0.001 and δ = π/4 and no non-standard interactions (or all the ε’s are zero), for Eµ

= 50GeV and the baseline of L = 3000 km (upper panels), 7000 km (middle horizontal panels) and

combination (lower panels). The thin dashed lines are to indicate the input values of εαβ . The fit

was performed by varying freely 4 parameters, θ13, δ and 2 ε’s with θ13 and δ being marginalized.

The number of muons decays per year is 1021, the exposure considered is 4 (4) years for neutrino

(anti-neutrino), and each detector mass is assumed to be 50 kton. The number of energy bins

considered is three. The other standard oscillation parameters are fixed as ∆m2
23 = 2.5× 10−3 eV2,

sin2 θ23 = 0.5, ∆m2
12 = 8.0 × 10−5 eV2 and sin2 θ12 = 0.31.

we will make comments to clarify its nature in section 6 because the structure is even more

prominent with non-zero ε input.
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Figure 4: The same as in figure 3 but for a different combination of 2 ε’s, εee-εeµ (left panels),

εττ -εeµ (middle panels) and εeµ-εeτ (right panels).

The effect of combining the intermediate and the far detectors is remarkable. The

allowed regions scattered in wide ranges in the top (3000 km) and the middle (7000 km)

panels combine into a much smaller region in the bottom panel in figures 3–6. We should

remark that although the above mentioned over-all features remain unchanged for different

values of δ, the resultant sensitivity to ε’s depends rather strongly on the value of CP phase

δ as one can see by comparing between figure 3 and figure 5. The problem of δ dependence

of the sensitivity to ε’s will be fully addressed in section 7.

One may ask the question why the scattered regions in the top panel and the extended

region in the middle panel in each column in figure 3 and figure 5, and figure 4 and
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Figure 5: The same as in figure 3 but with δ = 3π/2.

figure 6, can be combined to yield such a small region. The answer is that it is due to the

CP phase δ. Namely, most of the region of overlap between the top and the middle panels

have mismatch in value of δ, and hence they do not survive when the two constraints are

combined. Therefore, keeping the solar ∆m2 and the KM phase degree of freedom is the

key to the high sensitivity to ε’s we observe in figures 3–6. The synergy effect that merit

us by combining the intermediate and the far detectors are even more significant compared

with the one in identical two detector method for measuring CP violation and determining

the mass hierarchy [45, 46].

Our last comment in this subsection is that a characteristic feature that manifest

itself in figures 3–6 gives us a warning. Namely, one could significantly overestimate the
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Figure 6: The same as in figure 4 but with δ = 3π/2.

sensitivity to detection of non-vanishing NSI by working only with a particular single

element εee or εeτ , for example. By working with two ε’s at the same time one is able to

recognize the whole structure as given in these figures.4

5.2 Sensitivity to θ13 and δ in the presence of NSI; case of zero input

We now examine the sensitivities to θ13 and δ in the presence of NSI. In figure 7 through

figure 10 we present the sensitivities to θ13 and δ by taking the same input value of θ13,

4It also raises the question whether the two ε systems are sufficiently generic to reveal the full structure

of the systems with larger number of ε’s which have a multi-dimensional χ2 manifold. We are not able to

answer the question in this paper.

– 16 –



J
H
E
P
1
2
(
2
0
0
7
)
0
0
2

sin2 2θ13 = 10−3. Figures 7 and 8 are for δ = π/4, whereas figures 9 and 10 are δ = 3π/2.

The organization of the figures is the same as in figures 3–6.

Let us look at the top panel for the detector at L = 3000 km. We clearly observe the

phenomenon of “confusion” in the presence of NSI, in particular for the case of δ = 3π/2.

Namely, NSI can mimic the effect of non-zero θ13 so that the allowed region extends to a

very small value of θ13. However, this feature is strongly perturbed by the measurement

at L = 7000 km. Because it is highly sensitive to the effects of NSI, it helps to resolve the

confusion between NSI and θ13. After combining informations of the intermediate and the

far detectors a tiny region in sin2 2θ13 − δ space results, as one can observe in the bottom

panels in figure 7 through figure 10. Thus, the problem of NSI - θ13 confusion can be solved

by the two detector setting.5

5.3 How do the sensitivities depend on θ13?

We discuss briefly how the sensitivities change when we take a smaller value of θ13, for

example, sin2 2θ13 = 0.0001. We present our results only for δ = 3π/2 for reasons of

limitation of space but make some comments on the other cases. In figures 11 and 12

we show the sensitivities to NSI parameters which may be compared to the corresponding

figures, figures 5 and 6, for the case sin2 2θ13 = 0.001. To our surprise, the over-all features

of the allowed regions are similar between the two cases. The only notable changes are

that: (1) in the εee − εττ system the sensitivities to these ε’s becomes worse by a factor of

3-4, but (2) in all the three systems which involve εeµ, εee−εeµ, εττ −εeµ, and εeτ −εeµ, the

sensitivities become better for sin2 2θ13 = 0.0001. The similar worsening or improvement

of the sensitivities to NSI are observed in other values of δ. They become worse in some

cases, in particular, in the εee − εττ system with δ = π/4 and π/2 at L = 3000 km. The

sensitivities to εee and εττ improve by almost a factor of 2 at δ = π with sin2 2θ13 = 0.0001

compared to the case of 0.001. The sensitivity to εeτ gets improved by about a factor of 2

in the εeµ − εeτ system at δ = π/4. Thus, most of the improvement occur in the systems

which involve εeµ. The reason is that the sensitivity to εeµ is particularly good at L = 3000

km and it makes the synergy effect even stronger.

We notice that the branch structure we saw in section 5.1 is also rounded off, and

the island structure becomes less prominent at sin2 2θ13 = 0.0001. The smoothing of the

contour and the improvement of the sensitivity may be due to the fact that at such very

small θ13 the effect of NSI becomes important compared to the standard oscillation effect.

On the other hand, the sensitivity to θ13 and δ definitely becomes worse when we go

down to sin2 2θ13 = 0.0001 as shown in figures 13 and 14. First of all, the problem of θ13-

NSI confusion becomes severer as one can see by comparing figures 13 and 14 to figures 9

and 10. A new allowed region emerges in the εee − εeτ and εττ − εeτ systems at L = 3000

km. Due to lack of statistics at the small θ13 sensitivity to θ13 is significantly reduced at

L = 7000 km, leading to the visible loss of the sensitivities.

5The “confusion theorem” stated in [14] refers to the situation in which we have both NSI at source

and in propagation and they are related with each other in a specific way. Therefore, our discussion in this

paper does not affect the validity of this theorem.
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Figure 7: Allowed regions projected into the plane of sin2 2θ13-δ corresponding to the case where

the input parameters are sin2 2θ13 = 0.001 and δ = π/4 and no non-standard interactions (or all

the ε’s are zero), for Eµ = 50GeV and the baseline of L = 3000 km (upper panels), 7000 km

(middle horizontal panels) and combination (lower panels). The fit was performed by varying freely

4 parameters, θ13, δ and 2 ε’s where εee and εeτ are marginalized (left panels), εττ and εeτ are

marginalized (middle panels) and εee and εττ are marginalized (right panels). The same input and

fitting parameters as in figure 3 but projections are made into the different parameter space.

In summary, neutrino factory with two detector setup at L = 3000 and 7000 km is

more resistant to small values of θ13 as a discovery machine for NSI, rather than as a

machine for precision measurement of θ13 and δ.
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Figure 8: The same as in figure 7 but for different combination of 2 ε’s to which the fit to sin2 2θ13

and δ is marginalized; εee-εeµ (left panels), εττ -εeµ (middle panels) and εeµ-εeτ (right panels).

5.4 Comparing the sensitivities to θ13 and δ for cases with and without NSI

It may be worthwhile to compare the sensitivities to θ13 and δ for cases without NSI to

the one with NSI using the same machinery used in our foregoing analysis. In figure 15 we

present the results without NSI. The results are to be compared with those in figures 7–10.

The resultant sensitivities to θ13 and δ are extremely good compared to those obtained for

the cases with NSI. We will quantify this comparison in a more extensive way in section 7

where we will cover the whole space of interest in θ13 and δ.
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Figure 9: The same as in figure 7 but with δ = 3π/2.

5.5 Effect of background and systematic errors

To have a rough idea of the possible effects of the background and the systematic uncertain-

ties to the sensitivities we have repeated the computation with these effects at δ = π/4 for

various values of θ13 in εee-εeτ , εττ -εeτ , and εee-εττ systems, which correspond to figure 3,

figure 7, and δ = π/4 counterpart of figure 11 (not shown). We estimate the number of

background events by using the signal to noise ratio calculated in ref. [47], and rescaling

the background to the number of useful muon decays used in this paper. We assign 20%

uncertainty to the number of background events. We also take 2.5% as the total systematic

uncertainty on the measurement.

For sin2 2θ13 = 0.001, we find that the introduction of systematic uncertainties and
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Figure 10: The same as in figure 8 but with δ = 3π/2.

background lead to decrease in the sensitivity to εeτ by ≃ 30%. The worsening of the

sensitivity to εee and εττ depends upon the sub-system being within the ranges 30%-

60% and 40%-50%, respectively. The effect of systematic errors and background is less

prominent at sin2 2θ13 = 0.005 but becomes larger at sin2 2θ13 = 0.0001, making the

sensitivity a factor of 2 worse.

On the other hand, the sensitivity to δ and sin2 2θ13 would be worsen by 30%-40%

and 50%, respectivelly, at sin2 2θ13 = 0.001, more or less independently of the sub-system

treated and on the ε’s discussed. An interesting feature of the sensitivity to δ and θ13

is that the effect of systematic errors diminishes as θ13 becomes small, and is at ∼ 20%

(30%) level for δ and sin2 2θ13, respectivelly, at sin2 2θ13 = 0.0001. Therefore, the impact
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Figure 11: The same as in figure 5 but with sin2 2θ13 = 0.0001.

of including the systematic to the sensitivity of δ and θ13 is limited in size, which is good

news. All numbers were evaluated at 3 σ CL.

Though we continue to ignore the systematic uncertainties and the background in the

rest of the analysis in this paper, the reader should remind that the estimated sensitivities

to NSI, δ, and θ13 have uncertainties at the level quoted above. To completely remove the

uncertainties requires precise knowledges of the performance of the detector.

6. Accuracies of determination of NSI, θ13, and δ

We now discuss the question of how well the magnitude of non-vanishing NSI can be deter-
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Figure 12: The same as in figure 6 but with sin2 2θ13 = 0.0001.

mined by the two detector setting, and at the same time to what extent the measurement

of θ13 and δ can be affected by non-zero input values of NSI. In this section, we examine

the particular systems: εee − εeτ , εττ − εeτ , and εee − εττ . We do not discuss the case

which involve εeµ. The reason is that we want to take the NSI input values well below

the current bounds presented eq. (2.2). The input value of εeµ which is comparable to the

present constraint will not affect the sensitivity. In section 7, we will present more global

informations. We work with the particular input values of θ13, δ, and the ε parameters;

sin2 2θ13 = 10−3, δ = 3π/2, εeτ = 0.01, εee = 0.1, and εττ = 0.2. But, the features are not

so different for other input values.
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Figure 13: The same as in figure 9 but with sin2 2θ13 = 0.0001.

6.1 Sensitivity to NSI, θ13, and δ; case of non-zero input of NSI

Roughly speaking, the sensitivities to NSI, θ13, and δ are not affected so much by the non-

zero input values of ε’s. This is because, even in the case of vanishing input, we freely vary

them in fitting the data, and the presence of these extra degrees of freedom of varying over

the NSI parameters is of key importance to determine (or affect) the sensitivities. Since the

results are similar to the previous case, where NSI input were set to zero, we only present

the figures for the case δ = 3π/2. Generally speaking, the sensitivity is worse than for the

case δ = π/4. More or less one can guess what would be the general characteristics of this

case from the figures with zero input, figures 3, 4, 7 and 8.

We first discuss the accuracy of the determination of NSI parameters. Presented in
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Figure 14: The same as in figure 10 but with sin2 2θ13 = 0.0001.

figure 16 is the sensitivities to NSI parameters with the non-zero inputs. We notice that

the features of the allowed regions are essentially the same as in the zero input case shown

in figure 5. (About the two split islands in the middle panels see below.) We note that the

accuracy of the determination of the ε parameters varies case by case. Most significantly,

the size of allowed region of εeτ , εee, and εττ become worse by more than a factor 2 in

εee − εeτ and εττ − εeτ systems. However, the accuracy of the determination of εeτ and εττ

at δ = π/4 (not shown) improves by a factor of ≃ 2 with the non-zero input values of NSI.

Next, we discuss the accuracy of the measurement of θ13 and δ in the presence of

non-vanishing input values of NSI. Figure 17 serves for this purpose. Again the features of

figure 17 are similar to those of figure 9. We, however, notice some new characteristics. The
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Figure 15: Allowed regions in the plane sin2 2θ13 − δ for the standard oscillation case (no NSI) for

the input values sin2 2θ13 = 0.001, δ = π/4 (left panels) and δ = 3π/2 (right panels). The allowed

regions were computed for 2 DOF. The experimental conditions are the same as for figure 7.

θ13-NSI confusion at L = 3000 km is severer for δ = 3π/2, but it is milder for δ = π/4 (not

shown) in the present case compared to zero ε input. Therefore, the degree of confusion

depends very much on δ. Also the resultant accuracy of the determination of θ13 and δ,

after the two detectors are combined, depends upon which ε is tuned on and also on δ

though only mildly. For δ = 3π/2, the uncertainty on sin2 2θ13 is smaller (larger) for the

case of non-zero input value of the NSI parameters than for the zero-input case in the

εττ − εeτ (εee − εeτ ) system. It is interesting (and encouraging) to observe that non-zero

input values of NSI essentially do not disturb the sensitivities to the determination of the

NSI parameters but also the sensitivities to θ13 and δ.
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Figure 16: The same as in figure 5 but for non-vanishing input values of ε; εee = 0.1, εeτ = 0.01

and εττ = 0.2. We note that only the input values of 2 ε’s are set to be non-zero at the same time.

The thin dashed lines indicate the corresponding non-zero values of εαβ for each panel.

6.2 Parameter degeneracies with and without NSI

In this subsection we want to make some remarks on the degeneracies associated with the

measurement of NSI parameters as well as θ13 and δ. In figure 16, we observe two clearly

separated islands in the regions allowed by the far detector measurement (middle panels)

for the εττ−εeτ and the εee−εeτ systems. A similar structure exists also in the combinations

involving εeµ. There exits a degeneracy of solutions of ε’s. It is easy to understand the

cause of the degeneracy; It is due to the invariance under sign change of εeτ that can be

absorbed by rotation of δ by π. The fact that the symmetry exists only at the magic
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Figure 17: The same as in figure 9 but for non-vanishing input values of ε; εee = 0.1, εeτ = 0.01

and εττ = 0.2.

baseline can be easily seen by comparing eqs. (A.25) and (3.2). This is also true in the

corresponding formula with εeµ that one can derive from eq. (A.27). Since δ is marginalized

the two clones appear in the allowed regions in the εττ − εeτ and εee − εeτ space.6

When the measurement at the two detectors, intermediate and far, are combined we

obtain a unique allowed region; The degeneracy is resolved. It must be the case because

there is no such symmetry in the whole system, see eq. (A.25) or (A.27). But, it is nice to

see that it actually occurs in the concrete two detector setting adopted in this paper.

6If one wants to interpret this symmetry as the one which exist in the truncated system in which ∆m2
21

is artificially switched off, it is a discrete version of the two phase degeneracy discussed in section 2.2.

– 28 –



J
H
E
P
1
2
(
2
0
0
7
)
0
0
2

We want to make brief remarks on the conventional parameter degeneracy [31, 33, 34]

which would affect the sensitivity to the lepton mixing parameter. It might also affect

the sensitivity to NSI through its effect to θ13 and δ. First of all, there is no θ23 octant

degeneracy because θ23 is held fixed to π/4 in our analysis. With regard to the four-

fold θ13 − δ degeneracy duplicated by the unknown sign of ∆m2
31 we have no hint for its

existence in our analysis, apart from some limited cases at sin2 2θ13 = 10−4 which might be

affected by it. The reason for this observation is that the clone solutions have a significantly

different value of δ from the true solution (very roughly speaking δclone ≈ π−δtrue), in both

the intrinsic and the sign-∆m2
31 degeneracies. Nonetheless, from the figures we presented

(and also in all those not shown) these is no such clone region. The reasons are: (1) The

intrinsic degeneracy is resolved by the spectrum information7, and (2) With long enough

baselines the mass hierarchy is determined. Therefore, we suspect that the conventional

parameter degeneracy plays minor role, if any, in our sensitivity analysis, except for the

one associated with θ23 which we do not consider in this work.

7. Discovery reach to NSI, θ13 and δ

In this section we try to summarize the sensitivities to NSI, θ13 and δ that can be achieved

by a neutrino factory with the intermediate-far detector setting. However, in looking for

ways to present the sensitivities, we recognized that the sensitivities depend very much on

the input values of δ and θ13. Therefore, we need to show the sensitivities as a function of

both δ and θ13 simultaneously.

In figures 18–22 we have presented the equi-uncertainty contours of a particular observ-

able O in the plane spanned by the input values of sin2 2θ13 and δ. We have defined the un-

certainty of measuring (or constraining) the observable O as ∆O ≡ (Omax−Omin)/2, except

for the case of sin2 2θ13, where we give the fractional uncertainty, i.e. ∆(sin2 2θ13)/ sin2 2θ13.

For all cases we present the 2σ CL (2 DOF) contours.

The sensitivity to the NSI parameters, θ13 and δ can be determined in the analysis of

the 6 combinations of NSI elements we have examined in this work: εee − εeµ, εee − εeτ ,

εee − εττ , εeµ − εeτ , εeµ− εττ and εeτ − εττ . Therefore we need altogether 12 panels to fully

present the sensitivities to the ε’s, and 12 panels present the sensitivities to the standard

oscillation parameters θ13 (6 panels) and δ (6 panels).

We show, for definiteness, the case the NSI parameters have zero (vanishingly small)

input values. But, as we saw in section 6, the results would not be so different even if

we had taken non-zero input values for the NSI. Prior to showing the sensitivity contours

we wish to warn the readers; Some of the structures are due to the finite grid used in our

calculation, so the precise shape of the contours may not be reliable.

Let us first look at figures 18 and 19 where we show the sensitivity to the NSI parame-

ters. Roughly speaking, for the typical value sin2 2θ13 ∼ 10−3 the sensitivity to εττ , εee, εeτ

and εeµ are ∼ 10-20%, 2-10%, 0.1-0.4% and 0.01-0.04%, respectively. As we have discussed

in previous sections, the off-diagonal NSI parameters have a much more significant impact

7We have confirmed that the intrinsic degeneracy survives the rate only analysis.

– 29 –



J
H
E
P
1
2
(
2
0
0
7
)
0
0
2

than that of the diagonal ones. We confirm here that in fact, they can be significantly more

constrained by data. We observe that the sensitivity to the off-diagonal NSI parameters is

basically not affected by the presence of another non-zero NSI contribution, whereas this

is not true for the sensitivity to the diagonal elements. We suspect that this comportment

may continue to be true even if more NSI parameters are switched on simultaneously.

Some of the features of these contours can be readily understood from the bi-probability

plots in figure 1. For example, from panel (b2) of figure 18 and panels (d2) and (f1) of

figure 19, we observe that the sensitivity to εeτ is best at δ = 0 and δ = π and worst at

δ = π/2 and 3π/2. This is exactly what one would expect from the upper right panel of

figure 1, namely, the points in P −P̄ space corresponding to δ = π/2 (square) and δ = 3π/2

(diamond) with non-zero εeτ can be confused with that of the standard case without NSI

effect (orange strip). One can also understand that this behavior does not depend on θ13.

Despite the contours for εee have a more complicated structure, one can guess from

the upper left panel of figure 1 that the best sensitivity should be for δ ∼ 0 − π/4 and

worse for δ ∼ π. This is also confirmed by panels (a1), (b1) and (c1) of figure 18.

The sensitivity to εeµ shows an intricate dependence on δ and θ13 as seen in fig-

ure 18(a2) and figures 19(d1) and (e1). The sensitivity is the worst at around δ ≃ π/2 and

≃ 3π/2 for sin2 2θ13 ∼ 10−2, and at around δ ≃ π for sin2 2θ13 ∼ 10−3. At sin2 2θ13 ∼ 10−4,

the sensitivity to εeµ has no significant dependence on δ. Let us understand the cause of

such complicated features. First of all, the sensitivity to εeµ is coming dominantly from the

measurement at 3000 km, as indicted in figures 4, 6 and 12. Then, it should be possible to

understand the behavior at sin2 2θ13 ∼ 10−3 from the bi-probability plot give in figure 2.

This is indeed the case; The upper middle panel of the bi-probability plot shows that the

ellipses of positive and negative εeµ as well as the one without NSI overlap with each other

at δ ∼ π, and hence the sensitivity is worst at δ ∼ π. The similar bi-probability plot for

sin2 2θ13 ∼ 10−2 (not shown) indicates that a positive, negative, and zero εeµ ellipses meet

at δ ∼ π/2 and ∼ 3π/2. (Precise values of the crossing point are at around δ = 0.6π and

1.4π.) At sin2 2θ13 ∼ 10−4 (not shown) there is no particular value of δ at which these

ellipses overlap. Thus, these features of the bi-probability plots explain the behavior of

sensitivity contours of εeµ in figure 18(a2) and figures 19(d1) and (e1).

Let us also discuss the sensitivity reach of θ13 and δ with and without NSI effect. In

figure 20 we show the iso-contours of uncertainty on the determination of the CP phase δ

(upper panel) and of sin2 2θ13 (lower panel) in the plane spanned by the input (true) values

of sin2 2θ13 and δ in the absence of NSI effect. These results must be compared with the

case with NSI effect we will show below.

In figure 21 we show the iso-uncertainty contour of the CP phase δ in the presence of

NSI parameters for the 6 different combinations of the 2 ε systems we considered in this

work. Roughly speaking, for the typical input value sin2 2θ13 ∼ 10−3 the sensitive become

worse when NSI is included. Nevertheless, the change is from ∆δ ≃ 0.05 − 0.1 radians

(without NSI) to ≃ 0.1 − 0.15 radians or so (with NSI), in all 6 cases. We conclude that

the difference between the sensitivities to δ with and without NSI is not dramatic.

On the other hand, regarding the sensitivity to sin2 2θ13, comparing the lower panel

of figure 20 with figure 22, we can see that for the typical input value sin2 2θ13 ∼
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Figure 18: Iso-contours of 2 σ CL (for 2 DOF) sensitivity (uncertainty) for εαβ parameter as

functions of the input parameters of sin2 2θ13 and δ. For each point in the sin2 2θ13 − δ plane

the uncertainty is defined as ∆ε ≡ (εmax − εmin)/2 where εmax(min) indicates the maximum and

minimum allowed value of ε parameters which is consistent with the case without NSI effect. In the

upper, lower and bottom panels, the sensitivities for (a1) εee and (a2) εeµ for the εee-εeµ system,

(b1) εee and (b2) εeτ for the εee-εeτ system, and (c1) εee and (c2) εττ for the εee-εττ system,

respectively, are shown. We note that the the uncertainty for εeµ shown in (a2) and εeτ shown in

(b2) are magnified by 100 and 10, respectively. Some of the structures are due to the finite grid

used in our calculation, so the precise shape of the contours may not be reliable.

10−3 the fractional uncertainty on sin2 2θ13 becomes larger with NSI, going from

∆(sin2 2θ13)/ sin2 2θ13 ∼ 10% (without NSI) to ∼ 10 − 20% (with NSI). Again we con-

clude that the impact of NSI in the determination of θ13 is not so striking.
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Figure 19: Same as in figure 18 but for different combination of the 2 ε system. In the upper,

lower and bottom panels, the sensitivities for (d1) εeµ and (d2) εeτ for the εeµ-εeτ system, (e1) εeµ

and (e2) εττ for the εeµ-εττ system, and (f1) εeτ and (f2) εττ for the εeτ -εττ system, respectively,

are shown. As in figure 18 the uncertainty for εeµ shown in (d1) and (e1) and εeτ shown in (d2)

and (f1) are magnified by 100 and 10, respectively.

8. Concluding remarks

We have demonstrated in this paper that a neutrino factory equipped with an intense

neutrino flux from a muon storage ring and two detectors, one located at L = 3000 km

and the other at L = 7000 km, is powerful enough to probe into extremely small values of

the NSI parameters. We have relied on the golden channel, νe → νµ, and its anti-neutrino

counter part in our analysis in this paper. Six different combinations of the two ε systems
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that can be obtained from the four NSI parameters, εαβ with (α, β) being (e, e), (τ, τ),

(e, µ) and (e, τ), are analyzed under the assumption of ignoring the effects of NSI at the

production and the detection of neutrinos.

The sensitivities to off-diagonal ε’s are excellent, |εeτ | ≃ a few × 10−3 and |εeµ| ≃
a few × 10−4 and while the ones for the diagonal ε’s are acceptable, |εee|(|εττ |) ≃ 0.1(0.2)

at 3σ CL and 2 DOF. These sensitivities remain more or less independent of θ13 down to

extremely small values such as sin2 2θ13 = 10−4. They seem also very robust in the sense

that they are not very disturbed by the presence of another non-zero NSI contribution. The

above characteristics of the sensitivities to NSI suggest that in our setting the off-diagonal

ε’s are likely the best place to discover NSI. We note that these results are obtained

under the assumption of ignoring background as well as systematic errors in our analysis.

According to our estimate, however, the effect of inclusion of them is limited to ∼ 50% (a

factor of 2) or so for θ13 as small as sin2 2θ13 = 10−3 (10−4).

One of the most significant features of the results obtained in our analysis is that the

presence of NSI does not confuses the precision measurement of θ13 and δ. The favorite

property arises from the synergy between the two detectors placed at the two different

baselines; The detector at the magic baseline is extremely (reasonably) sensitive to the

off-diagonal (diagonal) ε’s but lack sensitivity to δ. On the other hand, the intermediate

detector at L = 3000 km is sensitive to δ, while lacking good sensitivity to ε’s (except in the

case of εeµ). We have shown in section 5 and 6 that, when combined, the synergy between

the two detectors has an enormous power to resolve the confusion between θ13 and NSI.

Moreover, the impact of the systematic errors on δ and θ13 is limited especially at small θ13

and at most ∼10%-20% level at sin2 2θ13 = 10−4. We believe that the results obtained in

this paper open the door to the possibility of using neutrino factory as a discovery machine

for NSI.

Our analysis in this paper, however, has limitations of validity because we have assumed

that the effects of NSI in production and the detection processes are negligible. It may

be a self-consistent approximation when we discuss the εeτ system, assuming a very small

εeτ , because its effect on muon decay is expected to be small. But, if we discuss the εeµ

system it affects the production and the detection processes at one-loop level and all these

effects have to be consistently dealt with. In this paper we are not able to address this

point. Our analysis also does not include the energy resolution and the uncertainty on the

matter density as well as on the remaining mixing parameters.

We have also mentioned in section 2 that the phase of the off-diagonal εαβ produces

confusion problems of two types, the two-phase and the phase-magnitude confusion. In

our analysis we have shown that the discrete version of the former degeneracy is resolved

by the two-detector setting examined in this paper. Therefore, it is natural to expect that

the degeneracies in its generic form as well as the latter type will also be resolved by the

two-detector setting. The magnitudes of the solar ∆m2
21 sensitive terms will be different

between the intermediate and the far detectors so that the confusions will be lifted by

combining them. The work toward this direction is in progress.

One could think about adding the silver channel in the analysis [48]. This could, in prin-

ciple, increase the sensitivity to ǫτx. In the present setting of magnetized iron detectors it
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requires separation of muons produced by tau decay from those of oscillated νµ CC reaction.

This requires more sophisticated analysis and therefore it is left for future investigation.
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Católica do Rio de Janeiro, where part of this work was carried out, for the hospitality.

This work was supported in part by KAKENHI, Grant-in-Aid for Scientific Research, No

19340062, Japan Society for the Promotion of Science, by Fundação de Amparo à Pesquisa
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A. Derivation of appearance probability P (νe → νµ) in the presence of

non-standard interactions

In this appendix, we give a self-contained discussion for deriving the expression of appear-

ance probability P (νe → νµ) with simultaneous presence of non-standard interactions εee

and εeτ . For simplicity, we denote it εeτ − εee system, and use the method developed by

Kimura, Takamura, and Yokomakura (KTY) [49]. (See [50] for minor sign error in the

original formula, and [40] for a reformulation.)

The evolution equation of neutrinos can be written in the flavor eigenstate as

i
d

dx
να =

1

2E
Hαβνβ (α, β = e, µ, τ), (A.1)

where the Hamiltonian is given by

H = U







∆m2
11 0 0

0 ∆m2
21 0

0 0 ∆m2
31






U † + a(x)







1 + εee 0 εeτ

0 0 0

ε∗eτ 0 0






, (A.2)

whose first term will be denoted as Hvac hereafter and ∆m2
ji ≡ m2

j−m2
i . (Hence, ∆m2

11 ≡ 0

by definition.) In (A.2), a ≡ 2
√

2GF ne(x)E denotes the coefficient related to the index

of refraction of neutrinos in medium [3] with electron number density ne(x), where GF is

the Fermi constant and E is the neutrino energy. Despite that ne(x) may depend upon

locations along the neutrino trajectory, we use constant density approximation throughout

this paper. The MNS matrix U relates the flavor and the vacuum mass eigenstates as

να = (U)αiνi, (A.3)

where i runs over 1-3. We use the standard parametrization of the MNS matrix [51];

U =







c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13






, (A.4)
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Figure 20: Upper panel: Iso-contours of 2 σ CL (for 2 DOF) sensitivity (uncertainty) for the CP

phase δ (in radians) expected to be achieved at neutrino factory in the absence of the NSI effect in

the plane of the true values of δ and sin2 2θ13. The uncertainty is defined as ∆δ ≡ (δmax − δmin)/2

in radians, where δmax(min) is maximum (minimum) allowed value of δ (mod. 2π) for each given

input point. Lower panel: Similar plot as in the upper panel but for the fractional uncertainty

∆(sin2 2θ13)/ sin2 2θ13 (in percent) is shown.

where cij and sij (i, j = 1-3) imply cos θij and sin θij, respectively.

By defining renormalized matter coefficient and renormalized εeτ as

ã ≡ a(1 + εee) ε̃eτ ≡ εeτ

1 + εee
(A.5)
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Figure 21: Same as in the upper panel of figure 20 but for the case where the NSI parameters are

turned on in the fit. The iso-contours of ∆δ (in radians) at 2 σ CL (for 2 DOF) are shown for the

6 combinations of 2 ε system: (a) εee − εeµ, (b) εee − εeτ , (c) εee − εττ , (d) εeµ − εeτ , (e) εeµ − εττ

and (f) εeτ − εττ .

the matter term in the Hamiltonian can be written as

ã







1 0 ε̃eτ

0 0 0

ε̃∗eτ 0 0






. (A.6)

Thus, the problem is reduced to the effective system with only single type of NSI, ε̃eτ .

We now define the mass eigenstate in matter νm
i by using the transformation

να = (V )αi νm
i , (A.7)

where V is the unitary matrix which diagonalize the Hamiltonian with scaled eigenvalues λ

as V †HV = Hdiag ≡ diag(aλ1, aλ2, aλ3). We first obtain the expressions of the eigenvalues
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Figure 22: Same as in the lower panel of figure 20 but for the case where the NSI parameters are

turned on in the fit. The iso-contours of ∆(sin2 2θ13)/ sin2 2θ13 at 2 σ CL (for 2 DOF) are shown

for the 6 combinations of 2 ε system: (a) εee − εeµ, (b) εee − εeτ , (c) εee − εττ , (d) εeµ − εeτ , (e)

εeµ − εττ and (f) εeτ − εττ .

of the Hamiltonian (A.2). They are determined by the equation det[H −λaI] = 0 which is

the cubic equation for the scaled eigenvalue λ:

λ3 − (1 + δ31 + δ21)λ
2 (A.8)

+
[

c2
13δ31 +

{

δ31 + c2
12 + s2

12s
2
13 + 2c12s12s23c13Re(ε̃eτ )

}

δ21

−2c23c13s13(δ31 − s2
12δ21)Re(ε̃eτeiδ) − |ε̃eτ |2

]

λ

−δ21δ31

[

c2
12c

2
13 + 2c12s12s23c13Re(ε̃eτ ) − 2c2

12c23c13s13Re(ε̃eτeiδ)
]

+|ε̃eτ |2
[

s2
23c

2
13δ31 + (c2

12c
2
23 + s2

12s
2
23s

2
13 − 2c12s12c23s23s13 cos δ)δ21

]

= 0.

in which everything is scaled by a and δ21 and δ31 denote the scaled squared mass
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differences,

δ21 ≡ ∆m2
21

ã
, δ31 ≡ ∆m2

31

ã
. (A.9)

A.1 KTY method for obtaining exact oscillation probability with NSI

We follow the KTY method [49] for deriving P (νe → νµ) and write down the equations

Heµ = Hvac
eµ ,

HeτHτµ − HeµHττ = (Hvac
eτ + ε̃eτ )H

vac
τµ − Hvac

eµ Hvac
ττ . (A.10)

They give relationships between mixing matrix in vacuum and in matter as

∑

i

λiVeiV
∗
µi =

∑

i

δj1UeiU
∗
µi ≡ p,

cyclic
∑

ijk

λjλkVeiV
∗
µi =

cyclic
∑

ijk

δj1δk1UeiU
∗
µi + ε̃eτ

∑

i

δi1UτiU
∗
µi ≡ q. (A.11)

Notice that the effect of ε̃eτ is contained only in q. Solving (A.11) for VeiV
∗
µi under the

constraint of unitarity
∑

i VeiV
∗
µi = 0 we obtain

VeiV
∗
µi =

pλi + q

∆ji∆ki
(A.12)

where ∆ji ≡ λj − λi and (i, j, k) are cyclic.

Then, the appearance probability P (νe → νe) is given exactly by [49],

P (νe → νµ) = 4

cyclic
∑

(ijk)

(ReJ̃ ij
eµ + ReJ̃jk

eµ) cos

(

ãL

4E
∆ki

)

sin

(

ãL

4E
∆ij

)

sin

(

ãL

4E
∆jk

)

,

+8

cyclic
∑

(ijk)

J̃ sin

(

ãL

4E
∆12

)

sin

(

ãL

4E
∆23

)

sin

(

ãL

4E
∆31

)

, (A.13)

where the sum over the cyclic permutation is implied and

ReJ̃ ij
eµ =

|p|2λiλj + |q|2 + Re(pq∗)(λi + λj)

∆ij∆12∆23∆31
, (A.14)

J̃ =
Im(pq∗)

∆12∆23∆31
. (A.15)

It is thus convenient to compute the combination ReJ̃ ij
eµ + ReJ̃jk

eµ (note the minus sign),

ReJ̃ ij
eµ + ReJ̃jk

eµ ≡ −1

(∆ij∆jk)2
Jj (A.16)

– 38 –



J
H
E
P
1
2
(
2
0
0
7
)
0
0
2

where

Jj ≡ |p|2λ2
j + 2Re(pq∗)λj + |q|2

= Cj + 2A
(I)
j cos δ + 2A

(II)
j cos 2δ + 2B

(I)
j sin δ + 2B

(II)
j sin 2δ (A.17)

Cj = (p2
0 + p2

1)λ
2
j + 2{p0Re(q0) + p1Re(q1)}λj + |q0|2 + |q1|2 + |q2|2

A
(I)
j = p0p1λ

2
j +{p0Re(q1+q2)+p1Re(q0)}λj +Re(q0)Re(q1+q2)+Im(q0)Im(q1+q2)

A
(II)
j = p1Re(q2)λj + Re(q1)Re(q2) + Im(q1)Im(q2)

B
(I)
j = {p0Im(q1 − q2) − p1Im(q0)}λj + Re(q0)Im(q1 − q2) − Im(q0)Re(q1 − q2)

B
(II)
j = −p1Im(q2)λj + Im(q1)Re(q2) − Re(q1)Im(q2) (A.18)

J̃ is given by

J̃ =
1

∆12∆23∆31

[

J (I) sin δ + J (II) sin 2δ + K(0) + K(I) cos δ + K(II) cos 2δ
]

(A.19)

where

J (I) = {p0Re(q1 − q2) − p1Re(q0)}
J (II) = −p1Re(q2)

K(0) = −p0Imq0 − p1Imq1

K(I) = −{p0Im(q1 + q2) + p1Im(q0)}
K(II) = −p1Im(q2) (A.20)

The coefficients p and q, which are defined in (A.11), can be written as

p = p0 + p1e
−iδ

q = q0 + q1e
−iδ + q2e

+iδ (A.21)

where

p0 = δ21c12s12c23c13,

p1 = (δ31 − s2
12δ21)s23c13s13

q0 = −δ31δ21c12s12c23c13 + ε̃eτc23s23

[

δ31c
2
13 − δ21(c

2
12 − s2

12s
2
13)

]

.

q1 = δ21

[

−δ31c
2
12s23c13s13 + ε̃eτc12s12s

2
23s13

]

,

q2 = −ε̃eτδ21c12s12c
2
23s13. (A.22)

Notice that the coefficient p is identical with the standard case without NSI interactions

whereas q has a little more complex δ dependence with q2 term and the coefficients qi

(i = 1 − 3) have imaginary parts.

Collecting formulae given in the equations from (A.13) to (A.22) and using the exact

eigenvalues by solving the cubic equation (A.8), we obtain the exact expression of the
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appearance probability P (νe → νµ) with the neutrino NSI εee and εeτ . Notice that ã and

ε̃eτ are the renormalized quantities defined by (A.5).

P (νe → νµ; εee, εeτ )

= 8

cyclic
∑

(ijk)

−1

(∆ij∆jk)2

[1

2
Cj + A

(I)
j cos δ + A

(II)
j cos 2δ + B

(I)
j sin δ + B

(II)
j sin 2δ

]

× cos

(

ãL

4E
∆ki

)

sin

(

ãL

4E
∆ij

)

sin

(

ãL

4E
∆jk

)

,

+8
1

∆12∆23∆31

[

J (I) sin δ + J (II) sin 2δ + K(0) + K(I) cos δ + K(II) cos 2δ
]

× sin

(

ãL

4E
∆12

)

sin

(

ãL

4E
∆23

)

sin

(

ãL

4E
∆31

)

. (A.23)

A.2 Leading order formula of P (νe → νµ)

Now, we define the perturbative scheme we use in our derivation of the approximate ex-

pression of the appearance probability P (νe → νµ). We regard δ31 and a as of order unity,

and assume that s13 ≃ δ21 ≃ ε̃eτ are small and are of the same order to organize the

perturbation theory. We denote the expansion parameters symbolically as ǫ. We assume

that ǫ ∼ 10−2. If we organize the perturbation expansion in terms of ǫ we will recognize

that the leading order terms in the oscillation probability in P (νe → νµ) is of order ǫ2.

To the next to leading order in ǫ the solutions of the equation are given under the

convention that λ1 < λ2 < λ3 by

λ1 = c2
12δ21,

λ2 = δ31 −
δ31

1 − δ31

{

s2
13 + 2c23s13Re(ε̃eτe

iδ)
}

λ3 = 1 +
δ31

1 − δ31

{

s2
13 + 2c23s13Re(ε̃eτeiδ)

}

+ s2
12δ21 (A.24)

In (A.24) we have ignored even smaller corrections to the lowest eigenvalue because it is of

order ǫ3.

We restrict ourselves to the leading order as was done by Cervera et al. [28] for the

standard case without εαβ ’s. To this order, we in fact do not need the order ǫ corrections

in (A.24). By putting back the physical quantities replacing the scaled variables, the νµ
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appearance probability can be expressed to order ǫ2 as

P (νe → νµ; εee, εeτ )|2nd = P (νe → νµ; ε = 0)|2nd

− 4c23s
2
23

(ã − ∆m2
31)

2

[

2ã∆m2
31s13Re(εeτeiδ) + c23ã

2|εeτ |2
]

× cos

(

ãL

4E

)

sin

(

∆m2
31L

4E

)

sin

(

L

4E
(ã − ∆m2

31)

)

+4c23s23

[

(∆m2
31)

2

(ã − ∆m2
31)

2
s23

(

2s13Re(εeτe
iδ) + c23|εeτ |2

)

+
2∆m2

31∆m2
21

ã(ã − ∆m2
31)

c12s12c23Re(εeτ )

]

× cos

(

∆m2
31L

4E

)

sin

(

ãL

4E

)

sin

(

L

4E
(ã − ∆m2

31)

)

+4c23s23

[

c23s23|εeτ |2 − 2
∆m2

21

ã
c12s12c23Re(εeτ )

]

× cos

(

L

4E
(ã − ∆m2

31)

)

sin

(

ãL

4E

)

sin

(

∆m2
31L

4E

)

− 8c23s23

(ã − ∆m2
31)

[

∆m2
31s23s13Im(εeτeiδ) + ∆m2

21c12s12c23Im(εeτ )
]

× sin

(

∆m2
31L

4E

)

sin

(

ãL

4E

)

sin

(

L

4E
(ã − ∆m2

31)

)

, (A.25)

where P (νe → νµ; ε = 0)|2nd is nothing but the Cervera et al. formula [28]

P (νe→νµ; ε=0)|2nd = 4
(∆m2

31)
2

(ã−∆m2
31)

2
s2
23s

2
13 sin2

(

L

4E
(ã−∆m2

31)

)

+8Jr
∆m2

31∆m2
21

ã(ã−∆m2
31)

sin

(

ãL

4E

)

sin

(

L

4E
(ã−∆m2

31)

)

cos

(

δ−∆m2
31L

4E

)

+4

(

∆m2
21

ã

)

2c2
12s

2
12c

2
23 sin2

(

ãL

4E

)

. (A.26)

It is notable that the NSI effects survive in the leading order, ≃ ǫ2. If one want to

have explicit expression with εeτ and εee one can just use the relations (A.5) in (A.25).

The formula for P (νe → νµ) is valid only for small εeτ but for any finite size εee. The

antineutrino probability can be obtained by the replacement δ → −δ, a → −a, and εαβ →
ε∗αβ . We have checked that the same analytic formulas are obtained, when expressed in

terms of observable physical quantities, even if we work in the intermediate energy region

where λ2 > λ3.

Similarly, the formula of P (νe → νµ) with ε̃eµ can be computed to the leading order

– 41 –



J
H
E
P
1
2
(
2
0
0
7
)
0
0
2

as

P (νe → νµ; εee, εeµ)|2nd = P (νe → νµ; ε = 0)|2nd

− 4ãs3
23

(ã − ∆m2
31)

2

[

2∆m2
31s13Re(εeµeiδ) + s23ã|εeµ|2

]

× cos

(

ãL

4E

)

sin

(

∆m2
31L

4E

)

sin

(

L

4E
(ã − ∆m2

31)

)

+4
(ã−c2

23∆m2
31)

(ã−∆m2
31)

2

[

2∆m2
31s23s13Re(εeµeiδ)+(ã−c2

23∆m2
31)|εeµ|2

+2(ã − ∆m2
31)

(

∆m2
21

ã

)

c12s12c23Re(εeµ)

]

× cos

(

∆m2
31L

4E

)

sin

(

ãL
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ãL

4E

)

sin

(

L

4E
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